3.3.79 \(\int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\) [279]

3.3.79.1 Optimal result
3.3.79.2 Mathematica [A] (verified)
3.3.79.3 Rubi [A] (verified)
3.3.79.4 Maple [A] (verified)
3.3.79.5 Fricas [A] (verification not implemented)
3.3.79.6 Sympy [F]
3.3.79.7 Maxima [A] (verification not implemented)
3.3.79.8 Giac [F]
3.3.79.9 Mupad [B] (verification not implemented)

3.3.79.1 Optimal result

Integrand size = 26, antiderivative size = 117 \[ \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {16 i (a+i a \tan (c+d x))^{9/2}}{9 a^4 d}+\frac {24 i (a+i a \tan (c+d x))^{11/2}}{11 a^5 d}-\frac {12 i (a+i a \tan (c+d x))^{13/2}}{13 a^6 d}+\frac {2 i (a+i a \tan (c+d x))^{15/2}}{15 a^7 d} \]

output
-16/9*I*(a+I*a*tan(d*x+c))^(9/2)/a^4/d+24/11*I*(a+I*a*tan(d*x+c))^(11/2)/a 
^5/d-12/13*I*(a+I*a*tan(d*x+c))^(13/2)/a^6/d+2/15*I*(a+I*a*tan(d*x+c))^(15 
/2)/a^7/d
 
3.3.79.2 Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.60 \[ \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {2 (-i+\tan (c+d x))^4 \sqrt {a+i a \tan (c+d x)} \left (-1241 i-2367 \tan (c+d x)+1683 i \tan ^2(c+d x)+429 \tan ^3(c+d x)\right )}{6435 d} \]

input
Integrate[Sec[c + d*x]^8*Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
(2*(-I + Tan[c + d*x])^4*Sqrt[a + I*a*Tan[c + d*x]]*(-1241*I - 2367*Tan[c 
+ d*x] + (1683*I)*Tan[c + d*x]^2 + 429*Tan[c + d*x]^3))/(6435*d)
 
3.3.79.3 Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.87, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {3042, 3968, 53, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sec (c+d x)^8 \sqrt {a+i a \tan (c+d x)}dx\)

\(\Big \downarrow \) 3968

\(\displaystyle -\frac {i \int (a-i a \tan (c+d x))^3 (i \tan (c+d x) a+a)^{7/2}d(i a \tan (c+d x))}{a^7 d}\)

\(\Big \downarrow \) 53

\(\displaystyle -\frac {i \int \left (-(i \tan (c+d x) a+a)^{13/2}+6 a (i \tan (c+d x) a+a)^{11/2}-12 a^2 (i \tan (c+d x) a+a)^{9/2}+8 a^3 (i \tan (c+d x) a+a)^{7/2}\right )d(i a \tan (c+d x))}{a^7 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {i \left (\frac {16}{9} a^3 (a+i a \tan (c+d x))^{9/2}-\frac {24}{11} a^2 (a+i a \tan (c+d x))^{11/2}-\frac {2}{15} (a+i a \tan (c+d x))^{15/2}+\frac {12}{13} a (a+i a \tan (c+d x))^{13/2}\right )}{a^7 d}\)

input
Int[Sec[c + d*x]^8*Sqrt[a + I*a*Tan[c + d*x]],x]
 
output
((-I)*((16*a^3*(a + I*a*Tan[c + d*x])^(9/2))/9 - (24*a^2*(a + I*a*Tan[c + 
d*x])^(11/2))/11 + (12*a*(a + I*a*Tan[c + d*x])^(13/2))/13 - (2*(a + I*a*T 
an[c + d*x])^(15/2))/15))/(a^7*d)
 

3.3.79.3.1 Defintions of rubi rules used

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3968
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(a^(m - 2)*b*f)   Subst[Int[(a - x)^(m/2 - 1)*(a + x 
)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && 
 EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
 
3.3.79.4 Maple [A] (verified)

Time = 2.16 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.70

method result size
derivativedivides \(\frac {2 i \left (\frac {\left (a +i a \tan \left (d x +c \right )\right )^{\frac {15}{2}}}{15}-\frac {6 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {13}{2}}}{13}+\frac {12 a^{2} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {11}{2}}}{11}-\frac {8 a^{3} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {9}{2}}}{9}\right )}{d \,a^{7}}\) \(82\)
default \(\frac {2 i \left (\frac {\left (a +i a \tan \left (d x +c \right )\right )^{\frac {15}{2}}}{15}-\frac {6 a \left (a +i a \tan \left (d x +c \right )\right )^{\frac {13}{2}}}{13}+\frac {12 a^{2} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {11}{2}}}{11}-\frac {8 a^{3} \left (a +i a \tan \left (d x +c \right )\right )^{\frac {9}{2}}}{9}\right )}{d \,a^{7}}\) \(82\)

input
int(sec(d*x+c)^8*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
2*I/d/a^7*(1/15*(a+I*a*tan(d*x+c))^(15/2)-6/13*a*(a+I*a*tan(d*x+c))^(13/2) 
+12/11*a^2*(a+I*a*tan(d*x+c))^(11/2)-8/9*a^3*(a+I*a*tan(d*x+c))^(9/2))
 
3.3.79.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.32 \[ \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {256 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (16 i \, e^{\left (15 i \, d x + 15 i \, c\right )} + 120 i \, e^{\left (13 i \, d x + 13 i \, c\right )} + 390 i \, e^{\left (11 i \, d x + 11 i \, c\right )} + 715 i \, e^{\left (9 i \, d x + 9 i \, c\right )}\right )}}{6435 \, {\left (d e^{\left (14 i \, d x + 14 i \, c\right )} + 7 \, d e^{\left (12 i \, d x + 12 i \, c\right )} + 21 \, d e^{\left (10 i \, d x + 10 i \, c\right )} + 35 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 35 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 21 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 7 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

input
integrate(sec(d*x+c)^8*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
-256/6435*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(16*I*e^(15*I*d*x + 15 
*I*c) + 120*I*e^(13*I*d*x + 13*I*c) + 390*I*e^(11*I*d*x + 11*I*c) + 715*I* 
e^(9*I*d*x + 9*I*c))/(d*e^(14*I*d*x + 14*I*c) + 7*d*e^(12*I*d*x + 12*I*c) 
+ 21*d*e^(10*I*d*x + 10*I*c) + 35*d*e^(8*I*d*x + 8*I*c) + 35*d*e^(6*I*d*x 
+ 6*I*c) + 21*d*e^(4*I*d*x + 4*I*c) + 7*d*e^(2*I*d*x + 2*I*c) + d)
 
3.3.79.6 Sympy [F]

\[ \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \sec ^{8}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**8*(a+I*a*tan(d*x+c))**(1/2),x)
 
output
Integral(sqrt(I*a*(tan(c + d*x) - I))*sec(c + d*x)**8, x)
 
3.3.79.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.65 \[ \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\frac {2 i \, {\left (429 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {15}{2}} - 2970 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {13}{2}} a + 7020 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {11}{2}} a^{2} - 5720 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {9}{2}} a^{3}\right )}}{6435 \, a^{7} d} \]

input
integrate(sec(d*x+c)^8*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
2/6435*I*(429*(I*a*tan(d*x + c) + a)^(15/2) - 2970*(I*a*tan(d*x + c) + a)^ 
(13/2)*a + 7020*(I*a*tan(d*x + c) + a)^(11/2)*a^2 - 5720*(I*a*tan(d*x + c) 
 + a)^(9/2)*a^3)/(a^7*d)
 
3.3.79.8 Giac [F]

\[ \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=\int { \sqrt {i \, a \tan \left (d x + c\right ) + a} \sec \left (d x + c\right )^{8} \,d x } \]

input
integrate(sec(d*x+c)^8*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(I*a*tan(d*x + c) + a)*sec(d*x + c)^8, x)
 
3.3.79.9 Mupad [B] (verification not implemented)

Time = 13.14 (sec) , antiderivative size = 474, normalized size of antiderivative = 4.05 \[ \int \sec ^8(c+d x) \sqrt {a+i a \tan (c+d x)} \, dx=-\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,4096{}\mathrm {i}}{6435\,d}-\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,2048{}\mathrm {i}}{6435\,d\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}-\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,512{}\mathrm {i}}{2145\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^2}-\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,256{}\mathrm {i}}{1287\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^3}+\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,40960{}\mathrm {i}}{1287\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^4}-\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,52736{}\mathrm {i}}{715\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^5}+\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,11776{}\mathrm {i}}{195\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^6}-\frac {\sqrt {a-\frac {a\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )\,1{}\mathrm {i}}{{\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1}}\,256{}\mathrm {i}}{15\,d\,{\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x\,2{}\mathrm {i}}+1\right )}^7} \]

input
int((a + a*tan(c + d*x)*1i)^(1/2)/cos(c + d*x)^8,x)
 
output
((a - (a*(exp(c*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d*x*2i) + 1))^(1/2)* 
40960i)/(1287*d*(exp(c*2i + d*x*2i) + 1)^4) - ((a - (a*(exp(c*2i + d*x*2i) 
*1i - 1i)*1i)/(exp(c*2i + d*x*2i) + 1))^(1/2)*2048i)/(6435*d*(exp(c*2i + d 
*x*2i) + 1)) - ((a - (a*(exp(c*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d*x*2 
i) + 1))^(1/2)*512i)/(2145*d*(exp(c*2i + d*x*2i) + 1)^2) - ((a - (a*(exp(c 
*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d*x*2i) + 1))^(1/2)*256i)/(1287*d*( 
exp(c*2i + d*x*2i) + 1)^3) - ((a - (a*(exp(c*2i + d*x*2i)*1i - 1i)*1i)/(ex 
p(c*2i + d*x*2i) + 1))^(1/2)*4096i)/(6435*d) - ((a - (a*(exp(c*2i + d*x*2i 
)*1i - 1i)*1i)/(exp(c*2i + d*x*2i) + 1))^(1/2)*52736i)/(715*d*(exp(c*2i + 
d*x*2i) + 1)^5) + ((a - (a*(exp(c*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d* 
x*2i) + 1))^(1/2)*11776i)/(195*d*(exp(c*2i + d*x*2i) + 1)^6) - ((a - (a*(e 
xp(c*2i + d*x*2i)*1i - 1i)*1i)/(exp(c*2i + d*x*2i) + 1))^(1/2)*256i)/(15*d 
*(exp(c*2i + d*x*2i) + 1)^7)